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Abstract

The vibration and buckling of an infinite shear beam-column, which considers the effects of shear and the axial com-
pressive force, resting on an elastic foundation have been investigated when the system is subjected to moving loads of
either constant amplitude or harmonic amplitude variation with a constant advance velocity. Damping of a linear hys-
teretic nature for the foundation was considered. Formulations in the transformed field domains of time and moving
space were developed, and the response to moving loads of constant amplitude and the steady-state response to moving
harmonic loads were obtained using a Fourier transform. Analyses were performed to examine how the shear defor-
mation of the beam and the axial compression affect the stability and vibration of the system, and to investigate the
effects of various parameters, such as the load velocity, load frequency, shear rigidity, and damping, on the deflected
shape, maximum displacement, and critical values of the velocity, frequency, and axial compression. Expressions to pre-
dict the critical (resonance) velocity, critical frequency, and axial buckling force were proposed.
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1. Introduction

To investigate the dynamic response of pavement systems subjected to moving loads, beams and
plates on an elastic foundation have widely been employed as the models of the pavement systems
(Kim and Roesset, 1998; Liu and Gazis, 1999; Liu et al., 2000; Kim et al., 2002; Kim and McCullough,
2003). When those systems are analyzed with moving loads, the effects of shear and the forces in the
plate�s in-plane or beam�s axial direction are normally ignored. However, asphalt mixtures of the flexible
pavement systems are very sensitive to shear and the shear deformations in the thick cement concrete
slabs of the rigid pavement systems may not be negligible. Moreover, most rigid pavement systems
are subjected to in-plane compressive forces due to environmental loads such as changes in temperature
and moisture. If temperature increases, concrete slabs expand and compressive forces are induced be-
cause the slabs push each other. Due to these in-plane compressive forces, the concrete pavements some-
times experience buckling, which is also called blowup (Kerr and Dallis, 1985). Blowups are observed
both in jointed concrete pavements and continuously reinforced concrete pavements. The in-plane com-
pressive forces are also induced in prestressed concrete pavements (Brunner, 1975; Cable et al., 1986;
Powers and Zaniewski, 1987; Okamoto and Tayabji, 1995). Failures of the prestressed concrete pave-
ments caused by high compressive forces sometimes occur. Therefore, the effects of shear and the in-
plane compressive forces in the pavement systems need to be investigated when they are subjected to
moving loads.

The load amplitude of the moving loads is often assumed to be constant. However, the moving loads
created by vehicles in fact have variations in load amplitude with time that result from the pavement sur-
face roughness and the mechanical systems of the vehicles (Nasim et al., 1991; Kim et al., 2002; Kim and
McCullough, 2003). In addition, nondestructive testing vehicles such as the rolling dynamic deflectometer
apply a steady-state harmonic force while continuously moving (Bay et al., 1995; Kim et al., 1999). The
moving loads with such variations in load amplitude need to be considered in addition to the moving loads
of constant amplitude. Since the dynamic responses of the pavement systems and their simplified models
such as beams and plates on an elastic foundation show similar trends under moving loads (Kim and
Roesset, 1997), it is efficient to use beams on an elastic foundation to predict general behaviors of those
systems and to investigate the effects of shear and axial compression when they are subjected to moving
loads.

The objective of this paper is to discuss the stability and dynamic displacement response of an infinite
shear beam on an elastic foundation when the system is subjected to a static axial compressive force and
lateral moving loads of either constant amplitude or harmonic amplitude variation. Beams considering
the effect of shear and subjected to axial compression and lateral loads are called shear beam-columns.
The geometry and material properties were assumed to be linearly elastic. The elastic foundation was con-
sidered as either a Winkler-type or a two-parameter foundation and damping of a linear hysteretic or a vis-
cous nature was considered for the foundation. A distributed load with a constant advance velocity was
considered instead of a point load because moving loads in practice have normally a finite area over which
they are distributed and the point load represents only an extreme case. Formulations in the transformed
field domains were developed and the solutions were obtained using a double Fourier transform in time and
moving space for moving loads with arbitrary load variation, and a Fourier transform in moving space for
the steady-state response to moving harmonic loads and for the response to moving loads of constant
amplitude. Analyses were performed to investigate the effects of various parameters, such as the load veloc-
ity, load frequency, shear rigidity, and damping, on the displacements and critical values of the velocity,
frequency, and axial compressive force, and to examine how the consideration of shear and axial compres-
sion affect the displacement response and stability of the system. By conducting a large number of paramet-
ric studies, equations to predict the resonance velocity, resonance frequency, and axial buckling force were
developed.
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2. Formulations

If a shear beam resting on an elastic foundation is subjected to a static axial force and a dynamic vertical
load, as shown in Fig. 1, the governing differential equation for the system without damping and ignoring
rotary inertia can be written in a Cartesian coordinate system {x,y} as
m
o
2yðx; tÞ
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� S
o
2yðx; tÞ
ox2

� o/ðx; tÞ
ox

� �
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� /ðx; tÞ
� �

¼ 0; ð2Þ
where m is the mass of the beam per unit length, P is the axial force (positive and negative signs represent
tension and compression, respectively), k is the stiffness of the foundation per unit length, q(x, t) is the vertical
load per unit length,E is Young�s modulus of elasticity, I is the secondmoment of inertia, y(x, t) is the vertical
displacement of the beam, /(x, t) is the rotation of the beam, and S is the shear rigidity of the beam defined by
S ¼ k0AG; ð3Þ

where k 0A is the effective shear area and G is the shear modulus of the beam.

If the vertical load moves in the positive x direction with a constant advance velocity V, a moving coor-
dinate g can be defined by x � Vt. Then, the governing differential equation in a moving Cartesian coor-
dinate system {g,y} can be expressed as
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The solutions of Eqs. (4) and (5) can be obtained using the Fourier transform if the beam is assumed to
extend to infinity. If n and X are assumed to be the transformed fields of g (moving space) and t (time),

respectively, and if y(g, t), /(g, t), and q(g, t) are written in the form of Y(n,X)eiXteing, U(n,X)eiXteing, and
Q(n,X)eiXteing, respectively, the transformed displacements Y(n,X) and the transformed rotations U(n,X)
can be obtained by
Y ðn;XÞ ¼ Qðn;XÞ
Pn2 þ k � mðX� V nÞ2 þ Sn2 1� S

EIn2þS

� � ; ð6Þ

Uðn;XÞ ¼ iSn

EIn2 þ S
Y ðn;XÞ; ð7Þ
Fig. 1. Shear beam-column on elastic foundation subjected to moving load.
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where i ¼
ffiffiffiffiffiffiffi
�1

p
and the transformed load Q(n,X) is obtained using the double Fourier transform
Qðn;XÞ ¼
Z 1

�1

Z 1

�1
qðg; tÞe�inge�iXt dgdt. ð8Þ
Finally, the dynamic displacement response can be obtained using the double inverse Fourier transform
yðg; tÞ ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1

Qðn;XÞ
Pn2 þ k � mðX� V nÞ2 þ Sn2 1� S
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In practice, the above equations are solved using the fast Fourier transform (FFT), which is a discrete
transform. In the FFT, if the number of transformed points is sufficiently large, the increment of the field
of consideration is small enough, and the total length of the field of consideration, which is determined by
multiplying the number of transformed points by the increment of the field, is sufficiently large compared
with the response region, then the results should be very close to the analytical solutions with the errors that
can be negligible. In addition, to successfully perform the FFT in the time and frequency domains, the sys-
tem should have some damping. However, this requirement can be dropped when using the exponential
window method (Kausel and Roesset, 1992; Kim and Roesset, 1997).

If viscous damping is considered, c oyðx;tÞ
ot and c oyðg;tÞ

ot � V oyðg;tÞ
og

� �
should be added in Eqs. (1) and (4),

respectively, where c is the viscous damping constant. In addition, if linear hysteretic damping, which pro-
duces an energy loss per cycle that is frequency independent, is considered for the foundation, an expression
2iDk should be added for the damping term, where D is the damping ratio (Foinquinos and Roesset, 1995).
In this case, if the sign of the linear hysteretic damping term is made to be consistent with that of the viscous
damping term, the effect of hysteretic damping on the response is similar to that of viscous damping. Then,
the transformed displacements in Eq. (6) can be rewritten including damping terms as
Y ðn;XÞ ¼ Qðn;XÞ
Pn2 þ kð1þ 2iDÞ � mðX� V nÞ2 þ Sn2 1� S

EIn2þS

� �
þ icðX� V nÞ

. ð10Þ
If a two-parameter foundation (Filonenko-Borodich, 1940; Pasternak, 1954; Kerr, 1964; Vlasov and
Leontev, 1966) is considered to include the shear stiffness of the foundation, the term having the axial force
P in Eq. (1) can be rewritten as
�ðP þ k2Þ
o2yðx; tÞ
ox2

; ð11Þ
where k2 is the second parameter of the two-parameter foundation. As can be seen from Eq. (11), the sec-
ond parameter of the foundation increases the total axial tensile force (when P is in tension) or reduces the
total axial compressive force (when P is in compression). Therefore, the total axial force (P + k2) should be
used if the two-parameter foundation is considered.

If the moving load has a harmonic variation of the amplitude eiXt and only the steady-state response is of
interest, the displacement response in Eq. (9) with considering damping terms can be written as
yðg; tÞ ¼ 1

2p
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qðgÞe�ing dg; ð13Þ
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where X is the frequency of the moving harmonic load in radians per second. If the response to the force
sinXt (the imaginary component of eiXt is considered, the imaginary component of Eq. (12) should be used.
If a moving load has constant amplitude (X ¼ 0 in a moving harmonic load), the response can be obtained
by inserting 0 into the load frequency X in Eqs. (12) and (13). Because g is a point on the moving axis, the
above equations represent the response at a moving point with time. The response at a fixed point can sim-
ply be determined by the relation g = x � Vt, where x is the abscissa of the fixed point.

If a moving load has a loaded length d, the load pressure (load per unit length) q, and the variation in
load amplitude qf(t), the transformed load Q defined in Eqs. (8) and (13) can be obtained, respectively, by
Table
Proper
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d

q

Qðn;XÞ ¼ 2q
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2

n
e�ing0

Z 1

�1
f ðtÞe�iXt dt; ð14Þ

Qðn; tÞ ¼ 2q
sin dn

2

n
eiXte�ing0 ; ð15Þ
where g0 is the coordinate of the center of the load. The transformed load defined in Eq. (14) can be ob-
tained using FFT if the integration that includes the loading function f(t) cannot be solved analytically.
If the transient response to the moving harmonic load due to the initial application of the load is also of
interest, Eq. (14) should be used instead of Eq. (15) and the harmonic load should be defined from the in-
tended time of application. It is noted that the response including the transient response converges to the
steady-state response if there is damping in the system. In this study, when solving Eq. (12) using the FFT,
the number of transformed points of 16,384 and the distance increment of 12.7 mm were used.
3. Behavior under a moving load of constant amplitude

The dynamic displacement response and stability under a moving load of constant amplitude (when the
load frequency X is 0) is investigated first. The material properties and geometry used in this study are listed
in Table 1. The values of the parameters not shown in the table, such as load velocity, axial compression,
shear rigidity, and damping value, are considered within wide ranges. Damping of a linear hysteretic nature
for the foundation is considered in this study.

3.1. Deflected shapes

If a beam is sufficiently long and subjected to a moving load of constant amplitude with a constant ad-
vance velocity, the deflected shape under the moving load is the same at any instant along the moving axis.
This means that the deflected shape is moving with the load.

The deflected shapes along the moving axis for various values of the shear rigidity are shown in Fig. 2,
when a load velocity is 50 m/s, an axial compression is 2 MN, and there is no damping. The 0 distance in
1
ties of shear beam-column on elastic foundation and moving load
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the figure represents the location of the center of the load. The deflected shapes are symmetric with respect
to the center of the moving load. As the shear rigidity decreases, the maximum deflection becomes larger
but the peaks at the front and rear of the moving load are not much affected. It should be noted that the
infinite shear rigidity in the figure implies that there is no shear distortion. In this case, the shear beam
becomes the Bernoulli–Euler beam. When there is damping in the system, the effect of shear on the
deflected shapes is the same as that when there is no damping; however, damping reduces the maximum
deflection.

3.2. Critical velocity and buckling force

The effect of the shear rigidity on the relationship between the maximum deflection and the load velocity
is shown in Fig. 3. As the load velocity increases, the maximum deflection increases until the velocity
becomes close to the critical velocity and then decreases again. The critical velocity decreases as the shear
rigidity decreases. For velocities smaller than the critical velocities, the maximum deflection increases as the
shear rigidity decreases at a given velocity, which is the case shown in Fig. 2. For velocities larger than the
critical velocity of the system that has an infinitely large shear rigidity (in other words, no shear distortion),
the maximum deflection at a given velocity decreases with a decrease in the shear rigidity. However, as the
velocity increases further, the differences in the maximum deflections become smaller.

The relationships among the critical values of the velocity, shear rigidity, and axial compression are
shown in Fig. 4. If two variables are selected from the three variables of velocity, shear rigidity, and axial
compression, the critical value of the other variable can be determined by reading the coordinate of the
intercept with the critical surface. At a given shear rigidity, as the velocity increases, the critical axial com-
pressive force (buckling force) decreases. At a given velocity, as the shear rigidity decreases, the critical axial
compression becomes smaller. At a given axial compression, as the shear rigidity decreases, the critical
velocity decreases.

To find the expressions for the critical velocity and the critical axial compressive force, a number of para-
metric studies were performed considering wide ranges of variables. It was found that the loaded length,
within the practical range of the tire print length, did not affect the critical velocity. It was also found that
the critical velocity tended to increase very slightly with an increase in the hysteretic damping ratio, but the
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increase was small enough to be negligible within the practical range of the damping ratio for the founda-
tion. Finally, the critical velocity Vcr0 for a given axial compression and a shear rigidity can be predicted by
V cr0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
2
ffiffiffiffiffiffiffi
EIk

p
þ P � EIk

S

� �s
. ð16Þ
The critical axial compressive force for a given velocity and a shear rigidity can be obtained by solving Eq.
(16) for P. Then,
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P cr ¼ mV 2 � 2
ffiffiffiffiffiffiffi
EIk

p
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S
. ð17Þ
As can be predicted with Eq. (17), the static buckling force (when V = 0) is �2
ffiffiffiffiffiffiffi
EIk

p
þ EIk=S (the negative

sign represents compression). Fig. 5 shows the relationships between the critical velocity and the axial com-
pression, and between the critical velocity and the shear rigidity, obtained from the analysis and predicted
by Eq. (16). The results from the analysis and the formula are identical.
4. Behavior under a moving load with harmonic variation

The dynamic displacement response and buckling of a shear beam-column on an elastic foundation
is investigated when subjected to a moving load with harmonic amplitude variation. The stability and



S.-M. Kim, Y.-H. Cho / International Journal of Solids and Structures 43 (2006) 393–412 401
vibration of the system for a stationary harmonic load (V = 0) are studied first. Then, the displacement
amplitude distributions and the maximum displacements under a moving harmonic load are examined
for various values of the velocity, load frequency, axial compression, and shear rigidity.

4.1. Vibration and stability under a stationary harmonic load

The relationship between the maximum displacement and the load frequency for a stationary harmonic
load (V = 0) is shown in Fig. 6. When there is no axial compression, as shown in Fig. 6a, the maximum
displacement increases until the load frequency reaches the critical (resonance) frequency and then de-
creases. The critical frequency is not affected by the shear rigidity. In presence of an axial compressive force,
as shown in Fig. 6b, two critical frequencies are observed. The first critical frequency becomes smaller as the
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shear rigidity decreases; however, the second critical frequency is not affected by the shear rigidity and is the
same as the critical frequency of the system without axial compression (compare with Fig. 6a). For a given
frequency smaller than the first critical frequency, the maximum displacement increases with decreasing the
shear rigidity; however, for frequencies larger than the second critical frequency, the maximum displace-
ment does not seem to be affected by the shear rigidity and the effect of shear can be negligible.

The relationships among the critical values of the load frequency, axial compression, and shear rigidity
for the stationary harmonic load are shown in Fig. 7. At a given shear rigidity, the critical frequency in-
creases as the axial compression decreases. At a given axial compression (except 0 axial load), the critical
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frequency decreases as the shear rigidity decreases. When there is no axial load, the critical frequency is
constant regardless of the shear rigidity. At a given frequency, the critical axial compression decreases as
the shear rigidity decreases.

From a number of parametric studies, it was found that the critical frequency was affected by many
parameters but independent of the loaded length and damping ratio. The first critical frequency in Hz
(cps) of the stationary harmonic load, fcr0, can be obtained by
Fig. 9.
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The second critical frequency is the same as the critical frequency of the system without the axial load and
can be determined by Eq. (18). The critical axial compression for a stationary harmonic load can be
obtained by rearranging Eq. (19) for P and expressed as
Fig. 10
P cr ¼
EIðk � 4p2m�f

2Þ
S

� 2
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k
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r !
; ð20Þ
where �f is the frequency of the harmonic load in Hz. Fig. 8 shows the relationship between the critical fre-
quency and the shear rigidity for a stationary harmonic load with different axial forces, obtained from the
analysis and Eqs. (18) and (19). The results from the analysis and the formulas are identical.
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4.2. Vibration and stability under a moving harmonic load

Fig. 9a shows the relationship between the maximum displacement and the load frequency of the moving
harmonic load for a load velocity of 100 m/s that is smaller than the critical velocities of the moving load of
constant amplitude (in this case, about 170, 155, and 139 m/s for the systems with the shear rigidities of
infinity, 20, and 10 MN, respectively). The critical frequency decreases as the shear rigidity decreases.
For frequencies somewhat larger than the critical frequency, the maximum displacement tends to increase
again very slightly as the frequency increases, but finally decreases again. As shown in Fig. 9b, for a
load velocity of 200 m/s that is larger than the critical velocities of the moving load of constant amplitude,
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Fig. 11. Displacement distributions for V = 200 m/s (P = �2 MN, D = 1%): (a) load frequency = 15 Hz, (b) 40 Hz, and (c) 100 Hz.
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the critical frequency increases as the shear rigidity decreases. For frequencies larger than the critical
frequencies, the differences in the maximum displacements among the systems with different shear rigidities
become smaller and can be ignored as the frequency increases.

The displacement amplitude distributions for a moving harmonic load are investigated as shown in Fig.
10 when the load velocity is 100 m/s. Because the response under a moving harmonic load changes with
time, the maximum amplitudes of the responses along the moving axis are shown in the figures, and those
shapes do not necessarily occur at the same time. As shown in Fig. 10a, when the load frequency is 15 Hz,
which is smaller than the critical frequencies (see Fig. 9a), the maximum displacement becomes larger as the
shear rigidity decreases. On the other hand, when the load frequency is 40 Hz (Fig. 10b), which is larger
than the critical frequencies, the displacement amplitudes decrease with a decrease in the shear rigidity.
For a load frequency of 100 Hz (Fig. 10c), the displacement amplitudes in front of the moving load are
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frequency = 100 Hz.
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significantly smaller than those behind the load. As the shear rigidity decreases, the displacement ampli-
tudes in front of the load increase but those behind the load are not much affected. The maximum displace-
ment does not seem to be affected by the shear rigidity. The distributions of the displacement amplitudes for
a load velocity of 200 m/s are shown in Fig. 11. Regardless of the load frequencies, the beam is more
stressed behind the moving load. As the shear rigidity decreases, the maximum displacement decreases
for a load frequency of 15 Hz (Fig. 11a) but increases for a load frequency of 40 Hz (Fig. 11b), which
are the opposite phenomena when the load velocity is 100 m/s. The shapes of the displacement amplitudes
for a load frequency of 100 Hz (Fig. 11c) are very similar to those when the load velocity is 100 m/s.

The relationship between the maximum displacement and the load velocity for an axial compression of
2 MN is shown in Fig. 12a when a load frequency is 50 Hz, which is smaller than the first critical frequen-
cies of the stationary harmonic load. There are two critical velocities and both the first and second critical
velocities decrease as the shear rigidity decreases. As shown in Fig. 12b, when a load frequency is 100 Hz,
which is larger than the second critical frequencies of the stationary harmonic load (in this case, about
81 Hz regardless of the shear rigidity), the peaks corresponding to the second critical velocities are very
clearly observed but the peaks corresponding to the first critical velocities are not apparent. The second
critical velocity becomes smaller with decreasing the shear rigidity.

The relationship between the critical velocity and the load frequency is shown in Fig. 13. The critical
velocity for a load frequency of 0 represents the critical velocity of the moving load of constant amplitude.
As the load frequency increases, the first critical velocity decreases until 0 and then increases again for the
frequencies larger than the first critical frequency of the stationary harmonic load. However, this re-increase
in the first critical velocity after the first critical frequency of the stationary harmonic load tends to disap-
pear for frequencies larger than the second critical frequency of the stationary harmonic load. The second
critical velocity increases with an increase in the load frequency. For a given frequency smaller than the first
critical frequency of the stationary harmonic load, both the first and second critical velocities decrease as
the shear rigidity decreases. For a given frequency larger than the first critical frequency of the stationary
harmonic load, the second critical velocity decreases with a decrease in the shear rigidity.

The relationships among the critical values of the frequency, axial compression, and shear rigidity are
shown in Fig. 14. When a load velocity is smaller than the critical velocity of the moving load of constant
amplitude, as shown in Fig. 14a, at a given shear rigidity, the critical frequency increases as the axial
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compression decreases. At a given axial compression, the critical frequency decreases as the shear rigidity
decreases. At a given frequency, the critical axial compressive force decreases as the shear rigidity decreases.
When a load velocity is larger than the critical velocity of the moving load of constant amplitude (Fig. 14b),
at a given shear rigidity, the critical frequency decreases as the axial compression decreases. At a given axial
compression, the critical frequency becomes larger as the shear rigidity decreases. At a given frequency, the
critical axial compression decreases with decreasing the shear rigidity, which is the same phenomenon
observed with Fig. 14a when the load velocity is smaller than the critical velocity of the moving load of
constant amplitude.
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Fig. 15 shows the relationships among the critical values of the velocity, axial compression, and shear
rigidity when a load frequency is smaller than the first critical frequency of the stationary harmonic load.
For the first critical velocity, as shown in Fig. 15a, at a given shear rigidity, the critical velocity increases as
the magnitude of the axial compression decreases. At a given axial compression, the critical velocity de-
creases with decreasing the shear rigidity. At a given velocity, the critical axial compressive force decreases
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as the shear rigidity decreases. For the second critical velocity, as shown in Fig. 15b, the relationships are
similar to those for the first critical velocity shown in Fig. 15a. When a load frequency is larger than the first
critical frequency of the stationary harmonic load, the first critical velocity tends to disappear as previously
mentioned and the relationships among the second critical velocity, axial compression, and shear rigidity
are similar to those shown in Fig. 15b.
5. Summary and conclusions

The dynamic displacement response and stability of an infinite shear beam-column resting on an elastic
foundation have been investigated when the system is subjected to moving loads of either constant ampli-
tude or harmonic amplitude variation. For the response to moving loads of constant amplitude and for the
steady-state response to moving harmonic loads, formulations were developed in the transformed field do-
mains of time and moving space, and solutions were obtained using FFT. Analyses were performed to
investigate how the shear rigidity and the axial compression affect the vibration and stability of the system,
and to examine the effects of various parameters on the deflected shape, maximum displacement, and crit-
ical values of the velocity, frequency, and axial compression. Expressions to predict the critical values of the
velocity, frequency, and axial compressive force were proposed. The analysis results point to the following
conclusions.

1. When the system is subjected to a moving load of constant amplitude:
• For velocities smaller than the critical velocity, if the shear effect is considered, the maximum deflec-

tion becomes larger as the shear rigidity decreases but the peaks at the front and rear of the load are
not much affected.

• At a given axial compression, the critical velocity decreases as the shear rigidity decreases. At a given
shear rigidity, the critical velocity increases with decreasing the axial compression. At a given velocity,
the critical axial compression decreases as the shear rigidity decreases.
2. When the system is subjected to a stationary harmonic load:
• When there is no axial compression, one critical frequency is observed and that is independent of the

shear rigidity:
• In presence of axial compression, two critical frequencies are observed. The first critical frequency

is smaller than and the second critical frequency is the same as the critical frequency of the
system without considering an axial compression. As the shear rigidity decreases, the first critical
frequency decreases but the second critical frequency remains the same regardless of the shear
rigidity.

• At a given shear rigidity, the critical frequency becomes smaller as the axial compressive force
increases. In other words, the critical axial compressive force increases as the load frequency
decreases. At a given axial compression, the critical frequency decreases with decreasing the shear
rigidity. At a given frequency, the critical axial compression becomes smaller as the shear rigidity
decreases.
3. When the system is subjected to a moving harmonic load.
• For velocities smaller than the critical velocity of the moving load of constant amplitude, the critical

frequency decreases as the axial compression increases and the shear rigidity decreases. However, for
velocities larger than the critical velocity of the moving load of constant amplitude, the critical fre-
quency increases as the axial compression increases and the shear rigidity decreases. Regardless of
the velocity, at a given frequency, the critical axial compression decreases as the shear rigidity
decreases.
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• For frequencies smaller than the first critical frequency of the stationary harmonic load, two critical
velocities exist and those critical velocities decrease as the axial compression increases and the shear
rigidity decreases. For frequencies larger than the first critical frequency of the stationary harmonic
load, the first critical velocity tends to disappear and only the second critical velocity is clearly
observed. The second critical velocity also decreases with an increase in the axial compression and
a decrease in the shear rigidity.
4. Since the beam on elastic foundation has widely been employed as a simplified model of the pavement
systems, the formulations and the analysis results described in this paper can be used to investigate the
effects of the shear and the axial compression under the loads imposed by moving vehicles on the
behaviors of the pavement systems that are sensitive to the shear deformations, such as asphalt con-
crete pavements and thick Portland cement concrete pavements, and that are subjected to the axial
compression, such as Portland cement concrete pavements and prestressed concrete pavements. In a
previous study (Kim and Roesset, 1997), the relationships among the responses of the Euler beam
on elastic foundation, the Kirchhoff plate on elastic foundation, and the layered pavement systems sub-
jected to moving loads were identified, and the equations to find the beam width and the vertical stiff-
ness of the foundation were developed when using the Euler beam on elastic foundation to predict the
responses of more rigorous models of the pavement systems. The methodology used in that study can
also be employed for the shear beam-columns on elastic foundation to predict effects of the shear and
the axial force in the pavement systems. An alternative would be to find the percent difference in the
responses between the Euler beam and the shear beam-column on elastic foundation and simply to
apply the percent difference when considering the pavement response. Further studies, however, need
to be conducted in this area.

5. As examined in this paper, neglecting the effects of the shear and the axial compression when the pave-
ment systems are analyzed may provide significant errors in predicting their behaviors. The current
AASHTO 2002 design guide for pavement systems does not include the shear and the axial force effects
when predicting the behaviors, such as displacements, stresses and cracks, of the pavement systems.
Since the performance prediction models of the pavement systems in the design guide are directly
affected by the behaviors of the pavement systems, the inclusion of those effects can improve the perfor-
mance prediction of the pavement systems.
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